1、点和圆的位置关系
如果圆的半径为r,已知点到圆心的距离为d,则可用数量关系表示位置关系.
(1)d>r点在圆外;
(2)d=r点在圆上;
(3)d<r点在圆内.
2、确定圆的条件
不在同一直线上的三个点确定一个圆.
3、三角形的外接圆
(1)定义:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.
三角形的外心:外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形.
注意:①要弄清“接”是指三角形各顶点在圆上,“外”是指三角形外,“内”是指圆内.
②三角形的外接圆和圆的内接三角形是针对上述同一个图形,从不同角度的两种说法.
(2)三角形外心的性质:
①三角形的外心是外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等.
②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是惟一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.
4、反证法
(1)定义:从命题结论的反面出发,经过推理论证,得出矛盾,从而证明命题成立,这种方法叫做反证法.
(2)反证法证明命题的一般步骤
①反设:作出与结论相反的假设;
②归谬:由假设出发,利用学过的公理、定理推出矛盾;
③作结论:由矛盾判定假设不正确,从而肯定命题的结论正确.
5、直线和圆的位置关系的定义及有关概念
(1)直线与圆的位置关系有关概念
①相交与割线:直线和圆有两个公共点时,叫做直线和圆相交,这条直线叫做圆的割线.
②切线与切点:直线和圆有惟一公共点时,叫做直线和圆相切,这条直线叫做圆的切线,惟一的公共点叫做切点.
③相离,当直线和圆没有公共点时,叫做直线和圆相离.
(2)用数量关系判断直线与圆的位置关系
如果⊙O的半径为r,圆心O到直线l的距离为d,那么: